

## Moisture Sensitivity

Utility of the Pull-Off Test



## Objectives

- Develop reliable and rapid method for evaluating the moisture susceptibility of neat and modified asphalt binders.
- Gain insight into the mechanisms by which water adversely affects asphalt pavements.
- Investigate aggregate systems that may contribute to adhesive failures, i.e., presence of surface active clays.

### Pneumatic Pull-Off Test



# Pneumatic Pull-Off Test Cohesive Failure



### Pneumatic Pull-Off Test



# Pneumatic Pull-Off Test Adhesive Failure

### Test Parameters

Glass Beads

1 wt.%

**■** Film Thickness

200 microns

Loading Rate

65.7 kPa/sec

**■** Test Temperature

25°C

Soak Temperature

25°C

Soak Times

0 - 24 hr

# Effect of Soak Time on SHRP Core Asphalts



# Effect of Soak Time on AAD-1 Asphalt and Maltenes



# Effect of Soak Time on AAM-1 Asphalts and Maltenes





Effect of Soak Time on Pull-off Strength of Maltenes

### Regression Slopes for Unaged SHRP Core Asphalts



#### **Regression Slope for Core Asphalts**



#### **Pneumatic Adhesion Test**



# Deformation vs. Hamburg WTD wheel passes, 58 °C.



### Findings

- Stiffer binders offer greater resistance to moisture susceptibility.
- Oxidation tends to improve this resistance.
- But stiffening attributed to excessive aging in the field may be detrimental. Pull-off test may not be able to identify this mode of distress.

### Findings

- Asphalts containing stiffer / more viscous maltenes are less moisture sensitive.
- Mode of modification can significantly affect the cohesive and adhesive strength of the binder.

### Ongoing Studies

- Mastic Testing with Pull-Off Tester
  - ♦ 6% and 31% loadings of –200 mesh agg.

Evaluation of Clays

Evaluation of Lime Useage

### Effect of Clays

- Key Findings
  - ◆ Not all clays are alike
  - Mixes containing montmorillonites are not likely to be corrected by antistrips
  - ◆ Hamburg validated the Pull-Off Test results of clay mastics
- Recommendation
  - ◆ Use Methylene Blue Test!!!!!!!

### **Methylene Blue Testing of Diabase Doped with Clay**



#### Effect of Clay Type on HWT Results



#### Effect of Lime on Mitigating Moisture Damage



# Effect(s) Of Lime





SBS-lg + 6% and 20% Hydrated Lime



### **CONCLUSIONS**

- Pneumatic Pull-Off Test is a quick, economical method for evaluating the moisture sensitivity of asphalt binders.
- Reproducibility of the test is quite good.
- Empirical model was developed that fits data for neat asphalts.
- High asphaltene asphalts are more sensitive to water than low asphaltene asphalts.

### Pitfalls

- Interpretation of aging effects and stiff binder (PG 76+) results.
- Relating lab findings with field performance
- Results limited to set film thickness and testing rate



| PERFORM   | ANCE | ISSUE                    | TEST                                    | PARAMETER                    | When to Use   |
|-----------|------|--------------------------|-----------------------------------------|------------------------------|---------------|
|           | TEN  | TATIVE MOIS              | STURE SENSI                             | TIVITY TOOI                  | LS            |
| Raveling  |      | Dissolution of Aggregate | Atomic Absorption                       | Na+, K+<br>Ion Concentration | Per Project   |
| Stripping |      | Presence of Surfactants  | Branthaver<br>Separation Funnel<br>Test | Presence of<br>Emulsion      | Binder Source |
| Rutting   |      | Water Permeation         | Pull-Off Test                           | Strength Ratio               | Binder Source |
| Fatigue   |      | Wet Oxidation            | PAV                                     | Rheological                  | Binder Source |
| Fatigue   |      | Loss of Adhesion         | ?                                       | Tackiness                    | Binder Source |

| PERFORMANCE     | ISSUE       | TEST                           | PARAMETER      | When to Use                                |
|-----------------|-------------|--------------------------------|----------------|--------------------------------------------|
|                 | Tentative M | oisture Sensi                  | tivity Tools   |                                            |
| Stripping       | Adhesion    |                                | Surface Energy | Binder-Aggregate<br>Pairing                |
| Stripping       | Adhesion    | Sonic Bath<br>Loose Mix        | Gravimetric    | Binder-Aggregate<br>Pairing                |
| Stripping       | Adhesion    | Pull-Off Testing of<br>Mastics | Strength Ratio | Binder-Aggregate<br>Pairing                |
| Moisture Damage | ALL         | Sonic Bath Sections of Cores   | Gravimetric    | Test Gyratory<br>Cores or Field<br>Samples |